Unit 8b Review Sheet

Figure	Name	Volume Formula	Surface Area Formula
1. height width			
2.			
3.			
4.			
5.			
6. Height Base			
7.			

** Don't Forget: $Circumference = \pi d$

Area of circle = πr^2

Area of Trapezoid = 1/2 (b_1+b_2)(h)

Area of Semícírcle: $(\pi r^2)/2$

Find the a) Vertical Cross Section and b) Horizontal Cross Section of:

8.

a) Vertical:

b) Horizontal:

9.

a) Vertical:

b) Horizontal:

10.

a) Vertical:

Identify the figure. Name the bases, faces, edges,

There are two congruent triangular bases, so the solid

b) Horizontal:

Lesson 12-4 Three-Dimensional Figures (pp. 574–579)

Identify each figure. Name the bases, faces, edges, and vertices. Complete #11-14 Below in space

11.

12.

13.

14

15. Draw the top view and side view of the drum. Then draw and describe the shape resulting from a vertical cross section of the figure.

11. Bases:

Faces:

Edges:

Vertices:

13. Bases:

vertices: A, B, C, D, E, F

is a triangular prism.

bases: ABC, DEF

Example 4

and vertices.

Faces:

Edges:

Vertices:

faces: ABED, BCFE, ACFD, ABC, DEF

edges: AB, BC, AC, DE, EF, DF, AD, BE, CF

12. Bases:

Faces:

Edges:

Vertices:

14. Bases:

Faces:

Edges:

Vertices:

Page 2

Lesson 12-5 Volume of Prisms (pp. 580-585)

Find the volume of each prism.

16.

17.

- 18. A shipping box is 11 inches long, 8.5 inches wide, and 5.5 inches high. What is the volume of the box?
- 19. Sandra is filling a keepsake storage box that is 40.5 centimeters long, 28 centimeters wide, and 17 centimeters high. What is the volume of the box?

Example 5

Find the volume of the rectangular prism.

 $V = \ell wh$

Volume of a prism

 $V = 8 \cdot 2.1 \cdot 4.5$

Replace ℓ with 8, w with 2.1, and h with 4.5.

$$V = 75.6 \,\mathrm{m}^3$$

Simplify.

The volume of the prism is 75.6 cubic meters.

Lesson 12-6 Volume of Cylinders (pp. 586–590)

Find the volume of each cylinder. Round to the nearest tenth, if necessary.

20.

21.

22. A 12-ounce can of soda measures $4\frac{3}{4}$ inches high with a radius of $1\frac{1}{8}$ inches. Find the amount of soda that can fit in the can. Round to the nearest tenth.

Example 6

Find the volume of the cylinder. Round to the nearest tenth, if necessary.

-

$$V = \pi r^2 h$$

Volume of a cylinder

$$V = \pi (1.55)^2 (5.5)$$

Replace r with 1.55 and h with 5.5.

$$V \approx 41.5 \,\mathrm{m}^3$$

Simplify.

Lesson 12-7 Volume of Pyramids, Cones, and Spheres (pp. 595–600)

Find the volume of each figure. Round to the nearest tenth, if necessary.

23.

24.

25. Mr. Owens built a conical storage shed with a base 14 feet in diameter and a height of 11 feet. What is the volume of the shed?

Example 7

Find the volume of the cone. Round to the nearest tenth, if necessary.

$$V = \frac{1}{3}\pi r^2 h$$

= $\frac{1}{3}\pi (4.1)^2 (6.2)$

Volume of a cone

Replace r with 4.1 and h with 6.2.

 $\approx 109.1 \, \text{m}^3$

Simplify.

Lesson 12-8 Surface Area of Prisms (pp. 603–607)

Find the lateral and surface area of each prism. Round to the nearest tenth, if necessary.

26.

27.

28. Sarah is wrapping a gift that is 12 inches long, 6 inches wide, and 4 inches high. How many square inches of paper are needed to cover the gift?

Example 8

Find the lateral and surface area of the prism.

Lateral area of a prism

$$L = Ph$$

$$= (6+6+6)7$$

$$P =$$
 the perimeter of the base.

$$S = L + 2B$$

 $= 126 \text{ cm}^2$

Surface area of a prism
$$R = \frac{1}{2}hh$$

$$= 126 + 2\left(\frac{1}{2} \cdot 6 \cdot 5.2\right)$$

$$B = \frac{1}{2}bh$$

$$= 157.2 \text{ cm}^2$$

Simplify.

Lesson 12-9 Surface Area of Cylinders (pp. 610-614)

Find the lateral and surface area of each cylinder. Round to the nearest tenth, if necessary.

29

31.

33. A cable is covered by rubber sheathing and has a diameter of 3 millimeters. How much rubber sheathing is there in 100 centimeters of cable?

Example 9

Find the lateral and surface areas of the cylinder below. Round to the nearest tenth, if necessary.

Lateral Area

$$L = 2\pi r h$$

$$= 2 \cdot \pi \cdot 7 \cdot 13$$

$$\approx 571.8 \text{ in}^2$$
Lateral area of a cylinder
Replace r with 7 and h with 13.

Surface Area

$$S = L + 2\pi r^2$$
 Surface area of a cylinder
= 571.8 + $2\pi (7)^2$ Replace L with 571.8 and r with 7.
 $\approx 879.7 \text{ in}^2$ Simplify.

Find the lateral and surface areas of each figure. Round to the nearest tenth, if necessary.

34.

35.

36.

37.

38. A pyramid-shaped roof has a slant height of 18 feet and its square base is 55 feet wide. How many square feet of roofing material is needed to cover the roof?

Example 10

Find the lateral and surface area of the square pyramid.

Lateral Area

$$L = \frac{1}{2}P\ell$$
 Lateral area of a pyramid
 $= \frac{1}{2}(4 \cdot 9)(17)$ Substitute.
 $= 306 \text{ ft}^2$ Simplify.

Surface Area

$$S = L + B$$
 Surface area of a pyramid
= $306 + 9^2$ Substitute.
= 387 ft^2 Simplify.